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Uncertainty measures in multigranulation
with different grades rough set based on
dominance relation1

Jianhang Yu, Xiaoyan Zhang∗, Zhenhua Zhao and Weihua Xu
School of Mathematics and Statistics, Chongqing University of Technology, Chongqing, P.R. China

Abstract. The graded rough set and multi-granulation rough set are two significant generalized rough set models which
be constructed on the indiscernibility relation. They solve the issues that the degree of overlap between the equivalence
class and basic set in different view points of quantitative information. The purpose of this study is that research the good
points of graded rough set in the multi-granulation environment which in different granules have different grades based on
dominance relation. Three new types of multi-granulation with different grades rough set models are proposed, which include
the optimistic, pessimistic and mean multi-granulation with different grades rough set. Then, their principal structure, basic
properties and serval kinds of uncertainty measure methods are investigated as well. Furthermore, an experimental evaluation
about urban investment is utilized to verify the proposed properties, which is valuable for applying these theories to deal with
practical issues.

Keywords: Different grades, dominance relation , graded rough set, multi-granulation rough set, uncertainty measures

1. Introduction

In 1980s, Pawlak first proposed the Rough set the-
ory (RST) in [7]. It is a mathematical tool to deal with
uncertainty in an information system. Compared with
the probability theory, fuzzy set and evidence theory,
it have their own advantages in the fields of medical
diagnosis, knowledge discovery, image processing
and so on.

It is built on the basis of the classification mech-
anism and classified as the equivalence relation in a
specific universe, and the relation constitutes a parti-
tion of the discuss universe. The main idea of RST is
the utilize a known knowledge in knowledge base to

1This paper is recommended by ICNC-FSKD 2015, and it is a
further study of the literature [26].
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approximate the inaccurate and indeterminate knowl-
edge. But, there is a severe limitation for Pawlak
rough set. That there is no fault tolerance mecha-
nisms between equivalence class and the basic set.
Thus, people take considered the degree of overlap
of the equivalence class and the basic set in the view
of quantitative information. They thought the RST
should be improved and expanded that the quantifi-
cation of particular value are considered. So, Yao
et al. investigated the relationship between rough
set model and modal logics, the graded rough set
(GRS) was proposed by utilizing the modal log-
ics [20]. The absolute quantitative information about
knowledge and concepts are described in this model,
and expands the Pawlak model. Zhang have accom-
plished a lot of research studies on graded rough set
and related works [27]. Measures |[x]R| − |X ∩ [x]R|
and |X ∩ [x]R| reflect the absolute number of |[x]R|
elements outside and inside X, and called external
grade and internal grade, respectively. So, based on
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above absolute numbers and the Rk(X) means union
of the elements which whose classes’s internal grade
aboutX is greater than k; Rk means union of the ele-
ments which whose classes’s external grade about
X is at most k [28]. This nature number k is called
the grade of GRS. Because we describe the lower
and upper approximations in absolute quantitative
information so the Rk(X) ⊆ Rk(X) does not hold, in
general. The GRS model which based on two discuss
universes was proposed by Liu [5].

Furthermore, the attributes with preference-
ordered domains (sometimes it’s named criteria) are
not studied in the original approaches. In a lot of
real applications, we have to faced the issues that
one attribute play a crucial role in make decision. For
this reason, Yao considered this kind problem that
through looking foe the relationship between order-
ings of attribute values and the objects to mining
ordering rules in [21]. For looking for the rules, the
general information table be generalized to an infor-
mation system with order that is ordered information
system(OIS). In [2], through taking into account the
ordering properties of criteria the RST was expanded
by Greco et al. The expanded model also named
dominance-based rough set model (DRSA). Yang
investigated the RST approach and reductions based
on dominance relation (DR) in incomplete ordered
information system [23]. Xu have systematic studied
the rough set in OIS [15]. The main innovation of
these works is use a dominance relation replace the
indiscernibility relation.

As a useful tool for information processing, based
on Zadeh’s ‘information granularity’ [29] the Gran-
ular Computing (GrC) was proposed. The GrC is a
term of methodologies, tools and techniques for mak-
ing utilize of granules in the process of solving real
problems. In recently decades, more and more sci-
entists focus on the study theory and applications of
GrC. In many fields it has been successfully applied
such as knowledge discovery, concept formation and
machining learning. Based on this view, the classi-
cal single-granulation Pawlak¡¯s rough set have been
extended to a multi-granulation rough set model by
Qian et al. [8, 9]. And later, many researchers have
extended the multi-granulation rough set. Xu et and
Wang further investigated a fuzzy multi-granulation
RST model in [16], a generalized multi-granulation
RST approach [17] and a multi-granulation RST
model in ordered information systems. The hierar-
chical structure properties of the multi-granulation
RST and the multi-granulation RST in incomplete
information system were investigated by Yang et al.

in [24] and [25], respectively. Lin et al. presented a
neighborhood-based multi-granulation RST [6]. Fur-
thermore, the properties of multi-granulation RST
and the topological structures were deep analyzed by
She et al. in [10]. Recently, follow the Xu’s work Li
et al. developed a further study of multi-granulation
T-fuzzy rough set, relationships between multi-
granulation and classical T-fuzzy rough set were
studied carefully [3]. Xu researches the uncertainty
measure of Atanassov’s intuitionistic fuzzy T equiva-
lence information systems [18], and Fan investigates
uncertainty measures in ordered information system
based on approximation operators [1]. In recent years,
processing large volumes of data has presented a
challenging issue, particularly in data-redundant sys-
tems. Li et al. proposed a parallel CRF algorithm
by combining and parallelizing the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) and
Viterbi algorithms [4], Zhu demonstrated how
graphic processing units (GPUs), powered by the
compute unified device architecture (CUDA), can
be used as an efficient computational platform to
accelerate the MAFFT algorithm [30], Salah inves-
tigated the Lazy-Merge, a novel implementation of
sequential in-place k-way merging algorithms, that
can be utilized in their parallel counterparts [11],
Xu developed an improved hybrid version of the
chemical reaction optimization (CRO) method called
HCRO (hybrid CRO) to solve the directed acyclic
graph(DAG) DAG-based task scheduling problem
[19], Xiao first elaborated a new and important query
in the context of an uncertain database, namely uncer-
tain top-(k,l) range (UTR) query, which retrieves l
uncertain tuples that are expected to meet score range
constraint [CR 1, CR 2] and have the maximum
top-k probabilities but no less than a user-specified
probability threshold q [14], Zhou researched skyline
queries over uncertain data in distributed environ-
ments (DSUD query) [31], Truong proposed a new
chemical reaction optimization with greedy strat-
egy algorithm (CROG) to solve KP01 and explained
the operator design and parameter turning methods
for CROG [13], Tang et al. systematically designed
a security-driven scheduling architecture that can
dynamically measure the trust level of each node in
the system by using differential equations [12].

The rest of this paper is organized by the follow-
ing way. Some necessary and essential concepts are
introduced in Section 2. In Section 3, three types
multi-granulation with different grades rough set
models are constructed based on DR and their prop-
erties are discussed. In Section 4, the uncertainties of
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the proposed models are measured. And an experi-
mental evaluation about urban investment is utilized
to verify the properties of the proposed in Section 5.
The Section 6 are the conclusions and the further
studies of this topic.

2. Preliminaries

In this section, a few basic notions about RST in
OIS [2, 15], graded rough set [20, 27, 28] and multi-
granulation rough set [8, 9] are simply reviewed.

2.1. The rough set based on dominance relation

An order triple I = (U, AT, F ) is an information
system, let for a criterion al ∈ AT and it’s domain
is complete pre-ordered through an outranking rela-
tion �al

, then x �al
y implies that x is at least no

less than y under the criterion al. In other words, we
can call that x dominates y. One can define x �al

y

by fl(x) ≥ fl(y) use the increasing preference, that
is al ∈ AT , x and y ∈ U. Give a subset A means
A ⊆ AT have for all al ∈ A, x � y is equivalent to
x �al

y. There is a another mean that x dominates
y under the all rules in A. In summary, an informa-
tion system which induced by a dominance relation
called ordered information system and it’s usually be
denoted as I� = (U, AT, F ).

Suppose there is an ordered information sys-
tem that I� = (U, AT, F ), given A ⊆ AT , the R

�
A

is a dominance relation in I�, namely, R
�
A =

{(x, y) : fl(x) ≥fl(y), ∀al ∈ A, (x, y) ∈ U× U}, and
U/R

�
A = {[x]

R
�
A

: x ∈ U} is the set of dominance

classes induced by a dominance relation R
�
A ,

where [x]
R

�
A

is called dominance class contain-

ing x, and [x]
R

�
A

= {z ∈ U : (z, x) ∈ R
�
A}. For all

X ⊆ U, A ⊆ AT , the upper and lower approxi-
mations are R

�
A(X) = {x ∈ U : [x]

R
�
A

∩ X /= ∅} and

R
�
A(X) = {x ∈ U : [x]

R
�
A

⊆ X}, respectively. When

R
�
A(X) /= R

�
A(X), in this ordered information system

one may call X is a rough set.

2.2. Graded rough set

The absolute quantitative information on basic
concepts and knowledge granules are the main inves-
tigated topics of the graded rough set model. It is also
a generalization of the classical rough set. If give a
non-negative integer k and it is named ‘graded’.

Given an information system I = (U, AT, F ), for
any A ⊆ AT, X ⊆ U, k ∈ N and RA is a equivalence
relation in I. We can get the definition of the graded
rough set is Rk(X) = {x ∈ U : |[x]R| − |[x]R ∩
X| ≤ k}, Rk(X) = {x ∈ U : |[x]R ∩ X| > k}. The
RkX is the union of the objects that whose equiv-
alence class include the numbers of elements outside
X are not more than k. So, the RkX means the union
of the objects that whose equivalence class include
the numbers of elements inside X are at least k. If
k = 0, then R(X) = Rk(X) and R(X)Rk(X). Thus,
the Pawlak rough set is one exceptional situation of
this graded rough set model. According to the defini-
tion, we can get that the inclusion between Rk(X) and
Rk(X) is not hold in most cases. Then, the upper and
lower boundary regions are naturally proposed. And
they are represented as pos(X) = Rk(X) ∩ Rk(X),
neg(X) =∼ (Rk(X) ∪ Rk(X)), the upper boundary
region is Ubn(X) = Rk(X) − Rk(X), the lower
boundary region is Lbn(X) = Rk(X) − Rk(X), and
the total boundary region is bn(X) = Ubnk(X) ∪
Lbnk(X), respectively.

2.3. Multi-granulation rough set

We just introduce the models of multi-granulation
rough set and the details can be found in ref-
erences [2]. If there is an information system
that I = (U, AT, f ), and Aj ⊆ AT, 1 ≤ j ≤ m, m

is the number of the considered attribute sets and
[x]Aj = {y|(x, y) ∈ RAj }, RAi is an equivalent rela-
tion with respect to the attributes set Aj . We can
get the definitions of the optimistic upper and lower
approximations of the set X ∈ U under the Aj

are
m∑

j=1
Ao

j (X) = {x ∈ U : X ∩
m∧

j=1
[x]Aj /= ∅}, and

m∑
j=1

Ao
j (X) = {x ∈ U :

m∨
j=1

[x]Aj ⊆ X}, respectively.

The pessimistic lower and upper approxima-
tions of a set X ∈ U about the Aj ⊆ A, 1 ≤
j ≤ m can be similarly defined by following

way. They are
m∑

j=1
A

p
j (X)(X) = {x ∈ U :

m∨
j=1

[x]Aj ∩

X /= ∅}, and
m∑

j=1
A

p
j (X) = {x ∈ U :

m∧
j=1

[x]Aj ⊆

X}, respectively. Moreover,
m∑

j=1
Ao

j (X) /=
m∑

j=1
Ao

j (X),

(
m∑

j=1
A

p
j (X) /=

m∑
j=1

A
p
j (X)), one can say that X is the
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optimistic (or pessimistic) rough set with respect to
multiple equivalence relations or multiple granula-
tions. If not the X is the optimistic (or pessimistic)
definable set about these multiple equivalence rela-
tions or multiple granulations. It’s similar to the
Pawlak rough set, we can obtain other regions
according to the upper and lower approximations,
respectively.

Based on the definitions of optimistic and
pessimistic multi-granulation rough set, the
follow properties are established. They are
m∑

j=1
Ao

j (X) ⊆
m∑

j=1
A

p
j (X),

m∑
j=1

Ao
j (X) ⊇

m∑
j=1

A
p
j (X)

and
m∑

j=1
Ao

j (X) ⊇
m∑

j=1
A

p
j (X), respectively. Accord-

ing to these two types of rough set models, we can
see that the optimistic boundary region is smaller
and the pessimistic boundary region is bigger than
the classical rough set model. In some cases, it can
deal with uncertain problems easily.

3. Multi-granulation with different grades
rough set based on dominance relation

To study the good points of graded rough set in
the multi-granulation environment based on OIS,
three new types multi-granulation with different
grades rough set models are proposed in this sec-
tion. They are the optimistic, pessimistic and mean
multi-granulation with different grades rough set,
respectively.

3.1. The optimistic multi-granulation with
different grades RST based on DR

We combine optimistic multi-granulation and
graded rough set model which in different granules
have different grades based on dominance relation.

Definition 3.1.1. There is an ordered information
system I� = (U, AT, f ), for any A1, A2, ..., Am are
subset of AT , and X ⊆ U, kj ∈ N. The optimistic
multi-granulation with different grades upper and
lower approximation set of X are defined in the fol-
lowing way:

m∑
j=1

R
�
Aj

O

kj

(X) = {x ∈ U :
m∨

j=1

(|[x]�Aj
|

−|X ∩ [x]�Aj
|) ≤ kj}, (1)

m∑
j=1

R
�
Aj

O

kj

(X) = ∼
m∑

j=1

R
�
Aj

O

kj

(∼ X). (2)

We can also define the optimistic multi-granulation
with different grades negative region, positive region,
and boundary region of X in the ordered information
system.

(1) Pos(X)Om∑
j=1

kj

=
m∑

j=1
R

�
Aj

O

kj

(X) ∩
m∑

j=1
R

�
Aj

O

kj

(X);

(2) Neg(X)Om∑
j=1

kj

=∼ (
m∑

j=1
R

�
Aj

O

kj

(X)

∪
m∑

j=1
R

�
Aj

O

kj

(X));

(3) Lbn(X)Om∑
j=1

kj

=
m∑

j=1
R

�
Aj

O

kj

(X)

−
m∑

j=1
R

�
Aj

O

kj

(X);

(4) Ubn(X)Om∑
j=1

kj

=
m∑

j=1
R

�
Aj

O

kj

(X)

− ∑m
j=1 R

�
Aj

O

kj

(X);

(5) Bn(X)Om∑
j=1

kj

=
m∑

j=1
R

�
Aj

O

kj

(X) 

m∑

j=1
R

�
Aj

O

kj

(X).

In the graded rough set model the lower approxi-
mation is not totally included in upper approximation,

it means that
m∑

j=1
R

�
Aj

O

kj

(X) ⊆
m∑

j=1
R

�
Aj

O

kj

(X) not holds

all the time. So, we describe the boundary region
through defined the lower and upper boundary region.
The “ 
 " is the symmetric difference operator of sets.
So, the boundary region of X can de described as
Bn(X)Om∑

j=1

kj

= Lbn(X)Om∑
j=1

kj

∪ Ubn(X)Om∑
j=1

kj

, too.

Theorem 3.1.1. There is an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am are subset of
AT , for any X ⊆ U, kj ∈ N. The following proper-
ties can be get:
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m∑
j=1

R
�
Aj

O

kj

(X) = {x ∈ U :
m∧

j=1

(|[x]�Aj
∩ X|) > kj} (3)

Proof. According the Definition 3.1.1 we can get

∼
m∑

j=1
R

�
Aj

O

kj

(∼ X)=∼ {x ∈ U : |[x]�A1
| − |[x]�A1

∩

(∼ X)| ≤ k1 ∨|[x]�A2
| − |[x]�A2

∩ (∼ X)| ≤ k2 ∨ · · ·
∨ ≤ km} = {x ∈ U : |[x]�A1

| − |[x]�A1
∩ (∼ X)| >

k1 ∧|[x]�A2
|− |[x]�A2

∩ (∼ X)| > k2 ∧ · · ·
∧|[x]�Am

| − |[x]�Am
∩ (∼ X)| > km} = {|[x]�Aj

| −
|[x]�A1

∩ ∼ X| > kj, ∀ j = 1, 2, 3, . . . , m} = {|[x]�Aj

∩ X| > kj, ∀ j = 1, 2, 3, . . . , m} = {x ∈ U :
m∧

j=1

(|[x]�Aj
∩ X|) > kj}.

Thus, the theorem is proved. �

Theorem 3.1.2. For an an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am ⊆ AT , for any
X, Y ⊆ U,kj ∈ N we have the follow properties:

(1)
m∑

j=1
R

�
Aj

O

kj

(U) = U;

(2)
m∑

j=1
R

�
Aj

O

kj

(∅) = ∅;

(3)
m∑

j=1
R

�
Aj

O

kj

(Y ) ⊇
m∑

j=1
R

�
Aj

O

kj

(X), where X ⊆ Y ;

(4)
m∑

j=1
R

�
Aj

O

kj

(Y ) ⊇
m∑

j=1
R

�
Aj

O

kj

(X), where X ⊆ Y ;

(5)
m∑

j=1
R

�
Aj

O

kj

(X) ∩
m∑

j=1
R

�
Aj

O

kj

(Y ) =

m∑
j=1

R
�
Aj

O

kj

(X ∩ Y );

(6)
m∑

j=1
R

�
Aj

O

kj

(X) ∩
m∑

j=1
R

�
Aj

O

kj

(Y ) ⊇

m∑
j=1

R
�
Aj

O

kj

(X ∩ Y );

(7)
m∑

j=1
R

�
Aj

O

kj

(X) ∪
m∑

j=1
R

�
Aj

O

kj

(Y ) ⊆

m∑
j=1

R
�
Aj

O

kj

(X ∪ Y );

(8)
m∑

j=1
R

�
Aj

O

kj

(X) ∪
m∑

j=1
R

�
Aj

O

kj

(Y ) =

m∑
j=1

R
�
Aj

O

kj

(X ∪ Y ).

Proof. According to the definition, the properties (1)
and (2) can be easily proved.

(3) If X ⊆ Y that mens ([x�]Aj ∩ X) ⊆
([x]�Aj

∩ Y ) for any j ∈ {1, 2, . . . , m. So,

(|[x]�Aj
| − [x]�Aj

∩ X|) ≥ (|[x]�Aj
| − [x]�Aj

∩ Y |).

For any x ∈
m∑

j=1
R

�
Aj

O

kj

(X) exist j s.t. |[x]�Aj
| ≤

kj + |[x]�Aj
∩ X| so, |[x]�Aj

| − |[x]Aj ∩ Y | ≤ kj .

That is, x ∈
m∑

j=1
R

�
Aj

O

kj

(Y ), namely,
m∑

j=1
R

�
Aj

O

kj

(X) ⊆

m∑
j=1

R
�
Aj

O

kj

(Y ).

(4) For any x ∈
m∑

j=1
R

�
Aj

O

kj

(X), then, for all j have

|[x]�Aj
∩ X| > kj . So, |[x]�Aj

∩ Y | > kj , hence, x ∈
m∑

j=1
R

�
Aj

O

kj

(Y ). Thus,
m∑

j=1
R

�
Aj

O

kj

(X) ⊆
m∑

j=1
R

�
Aj

O

kj

(Y ).

(5) For any X, Y ⊆ U, X ∩ Y ⊆ X, Y , then,
according property (3) the “⊆” can be proved. For

∀x ∈
m∑

j=1
R

�
Aj

O

kj

(X) ∩
m∑

j=1
R

�
Aj

O

kj

(Y ). Based on above

definition, we can get at last have one j s.t. |[x]�Aj
| −

|[x]�Aj
∩ X| ≤ kj and |[x]�Aj

| − |[x]�Aj
∩ Y | ≤ kj . So,

it must have one j, such that |[x]�Aj
| − |[x]�Aj

∩ X ∩

Y | ≤ kj . Thus, x ∈
m∑

j=1
R

�
Aj

O

kj

(X ∩ Y ), means “⊇” is

hold. Consequently, the prove is fulfilled.
The remaining (6), (7) and (8) can be similarly to

prove. �

Theorem 3.1.3. For an an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am ⊆ AT , for any
X, Y ⊆ U,kj ∈ N we have:

m∑
j=1

Ao
j (X) ⊆

m∑
j=1

R
�
Aj

O

kj

(X), (4)
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m∑
j=1

R
�
Aj

O

kj

(X) ⊆
m∑

j=1

Ao
j (X). (5)

Especially, for ∀ kj = 0, j ∈ {1, 2, . . . , m},

then
m∑

j=1
R

�
Aj

O

kj

(X) =
m∑

j=1
Ao

jk
(X),

m∑
j=1

R
�
Aj

O

kj

(X) =

m∑
j=1

Ao
j (X). So, the multi-granulation with different

grades rough set model is also an expansion of
multi-granulation RST model.

Proof. According the definitions it is easy to
prove. �

3.2. The pessimistic multi-granulation with
different grades RST based on DR

It’s similarly to optimistic multi-granulation
rough set model, we investigate pessimistic multi-
granulation with different grades RST in OIS.

Definition 3.2.1. There is an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am are subset of
AT , for any X ⊆ U, kj ∈ N. The pessimistic multi-
granulation with different grades upper and lower
approximation set of X are defined in following way:

m∑
j=1

R
�
Aj

P

kj

(X) = {x ∈ U :
m∧

j=1

(|[x]�Aj
|

−|[x]�Aj
∩ X|) ≤ kj}, (6)

m∑
j=1

R
�
Aj

P

kj

(X) = ∼
m∑

j=1

R
�
Aj

P

kj

(∼ X). (7)

Moreover,
m∑

j=1
R

�
Aj

P

kj

(X) /=
m∑

j=1
R

�
Aj

P

kj

(X), we say

that X is a pessimistic rough set about these multiple
grades. If not, one can say that X is pessimistic defin-
able set with respect to multiple grades and multiple
granulations in ordered information system. Based on
the above approximation operators, the other rough
regions can be defined like the optimistic case.

Theorem 3.2.1. If I� = (U, AT, f ) is an ordered
information system, A1, A2, ..., Am ⊆ AT , for any
X ⊆ U, kj ∈ N have

m∑
j=1

R
�
Aj

P

kj

(X) = {x ∈ U :
m∨

j=1

(|X ∩ [x]�Aj
|) > kj} (8)

Proof. The process is similarly to Theorem 3.1.1. �

Theorem 3.2.2. For an an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am ⊆ AT , for any
X, Y ⊆ U,kj ∈ N we have the follow properties:

(1)
m∑

j=1
R

�
Aj

P

kj

(U) = U;

(2)
m∑

j=1
R

�
Aj

P

kj

(∅) = ∅;

(3)
m∑

j=1
R

�
Aj

P

kj

(Y ) ⊇
m∑

j=1
R

�
Aj

P

kj

(X), where X ⊆ Y ;

(4)
m∑

j=1
R

�
Aj

P

kj

(Y ) ⊇
m∑

j=1
R

�
Aj

P

kj

(X), where X ⊆ Y ;

(5)
m∑

j=1
R

�
Aj

P

kj

(X) ∩
m∑

j=1
R

�
Aj

P

kj

(Y ) =

m∑
j=1

R
�
Aj

P

kj

(X ∩ Y );

(6)
m∑

j=1
R

�
Aj

P

kj

(X) ∩
m∑

j=1
R

�
Aj

P

kj

(Y ) ⊇

m∑
j=1

R
�
Aj

P

kj

(X ∩ Y );

(7)
m∑

j=1
R

�
Aj

P

kj

(X) ∪
m∑

j=1
R

�
Aj

P

kj

(Y ) ⊆

m∑
j=1

R
�
Aj

P

kj

(X ∪ Y );

(8)
m∑

j=1
R

�
Aj

P

kj

(X) ∪
m∑

j=1
R

�
Aj

P

kj

(Y ) =

m∑
j=1

R
�
Aj

P

kj

(X ∪ Y ).

Proof. It’s similarly to Theorem 3.1.2. �

Theorem 3.2.3. For an an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am ⊆ AT , for any
X, Y ⊆ U,kj ∈ N we have:

m∑
j=1

R
�
Aj

P

(X) ⊆
m∑

j=1

R
�
Aj

P

kj

(X), (9)
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m∑
j=1

R
�
Aj

P

kj

(X) ⊆
m∑

j=1

R
�
Aj

P

(X). (10)

Especially, for ∀ kj = 0, j = 1, 2, . . . , m, then
m∑

j=1
R

�
Aj

P

kj

(X) =
m∑

j=1
AP

jk
(X),

m∑
j=1

R
�
Aj

P

kj

(X) =

m∑
j=1

AP
j (X). So, the multi-granulation with dif-

ferent grades rough set is an expansion of the
multi-granulation rough set.

Proof. According the definition it is easy to prove. �

3.3. The mean multi-granulation with different
grades RST based on DR

To discuss the mean graded when there many
grades in multi-granulation environment, we define a
mean multi-granulation with different grades rough
set in OIS.

Definition 3.3.1. There is an ordered information
system I� = (U, AT, f ), A1, A2, ..., Am are subset
of AT , for any X ⊆ U, kj ∈ N. The mean multi-
granulation with different grades upper and lower
approximation set of X are respectively defined as
follows:

m∑
j=1

R
�
Aj

M

kj

(X) = {x ∈ U :
m∑

j=1

(|[x]�Aj
|

−|[x]�Aj
∩ X|) ≤

m∑
j=1

kj

m
}, (11)

m∑
j=1

R
�
Aj

M

kj

(X) = ∼
m∑

j=1

R
�
Aj

M

kj

(∼ X). (12)

Then, other regions can be obtained like previous.

Theorem 3.3.1. For an an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am ⊆ AT , for any
X, Y ⊆ U,kj ∈ N we have the follow properties:

m∑
j=1

R
�
Aj

M

kj

(X) = {x ∈ U :
m∑

j=1

(|[x]�Aj
∩ X|)

>
1

m

m∑
j=1

kj}. (13)

Proof. According the definition it is easy to prove. �

Theorem 3.3.2. For an an ordered information sys-
tem I� = (U, AT, f ), A1, A2, ..., Am ⊆ AT , for any
X, Y ⊆ U,kj ∈ N we have the follow properties:

(1)
m∑

j=1
R

�
Aj

M

kj

(U) = U;

(2)
m∑

j=1
R

�
Aj

M

kj

(∅) = ∅;

(3)
m∑

j=1
R

�
Aj

M

kj

(Y ) ⊇
m∑

j=1
R

�
Aj

M

kj

(X), where X

⊆ Y ;

(4)
m∑

j=1
R

�
Aj

M

kj

(Y ) ⊇ ∑m
j=1 R

�
Aj

M

kj

(X), where

X ⊆ Y ;

(5)
m∑

j=1
R

�
Aj

M

kj

(X) ∩
m∑

j=1
R

�
Aj

M

kj

(Y ) =

m∑
j=1

R
�
Aj

M

kj

(X ∩ Y );

(6)
m∑

j=1
R

�
Aj

M

kj

(X) ∩
m∑

j=1
R

�
Aj

M

kj

(Y ) ⊇

m∑
j=1

R
�
Aj

M

kj

(X ∩ Y );

(7)
m∑

j=1
R

�
Aj

M

kj

(X) ∪
m∑

j=1
R

�
Aj

M

kj

(Y ) ⊆

m∑
j=1

R
�
Aj

M

kj

(X ∪ Y );

(8)
m∑

j=1
R

�
Aj

M

kj

(X) ∪
m∑

j=1
R

�
Aj

M

kj

(Y ) =

m∑
j=1

R
�
Aj

M

kj

(X ∪ Y ).

Proof. It’s similarly to Theorem 3.1.2. �

4. Uncertainty measures

In this section, serval measures are utilized to
calculate the uncertainty of these models which pro-
posed in previous. The uncertainty of knowledge is
caused by the boundary regions, in the view point
of rough set approximation. The larger the boundary
area is, the more uncertainly. The accuracy, roughness
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and approximation quality are studied in the next. It

should be noted that the (
m∑

j=1
Aj,

m∑
j=1

kj, X) means the

basic set is X, and the grade of j−th granule is kj .
According to the uncertainty measure method in clas-
sical rough set, we can define the accuracy, roughness
and approximation quality for each model as follows.
Definition 4.1. (first type accuracy αI ) Let
I� = (U, AT, f ) is an order information system,
A1, A2, ..., Am are different granules in I, for any
X ⊆ U, kj ∈ N. The optimistic, pessimistic and
mean multi-granulation first type accuracy of set X

respect to granules
m∑

j=1
Aj (the grade of Aj is kj) is

defined in following way.

αI (
m∑

j=1

AO
j ,

m∑
j=1

kj, X) =

∣∣∣∣∣∣
m∑

j=1
R

�
Aj

O

kj

(X)

∣∣∣∣∣∣∣∣∣∣∣∣
m∑

j=1
R

�
Aj

O

kj

(X)

∣∣∣∣∣∣
. (14)

Where the | · | means the cardinality of a set. Sim-
ilarly to this way another two models’ accuracy can

be defined as α(
m∑

j=1
AP

j ,
m∑

j=1
kj, X) =

m∑
j=1

R
�
Aj

P

kj

(X)

/

m∑
j=1

R
�
Aj

P

kj

(X) and α(
m∑

j=1
AM

j ,
m∑

j=1
kj, X) =

m∑
j=1

R
�
Aj

M

kj

(X)

/
m∑

j=1
R

�
Aj

M

kj

(X), respectively.

For simplicity, we just give a generic definition
for the remained uncertainty measure. They can be
applied into each model in same way. Corresponding
to accuracy is roughness,The first type roughness of

set X with respect to (
m∑

j=1
Aj,

m∑
j=1

kj) is

βI (
m∑

j=1

Aj,

m∑
j=1

kj, X) = 1 − α(
m∑

j=1

Aj,

m∑
j=1

kj, X)

(15)

Roughness measure is the well-known
Marczewski-Steinhaus distance between the
lower and upper approximations according to Yao
[22]. Because some properties of expanded model
have changed. We need define a new method to
measure the accuracy, and the definition of second
type accuracy as follows.

Definition 4.2. (second type accuracy αII ) Sup-
pose I� = (U, AT, f ) is an order information system,
other conditions are the same as the Definition
4.1. The optimistic, pessimistic and mean multi-
granulation second type accuracy of set X respect

to (
m∑

j=1
Aj,

m∑
j=1

kj) is defined like this.

αII =

∣∣∣∣∣∣
m∑

j=1
R

�
Aj

kj

(X) ∩
m∑

j=1
R

�
Aj

kj

(X)

∣∣∣∣∣∣∣∣∣∣∣∣
m∑

j=1
R

�
Aj

kj

(X) 

m∑

j=1
R

�
Aj

kj

(X)

∣∣∣∣∣∣
. (16)

Similarly to the first type of roughness, the second
type roughness for each model can be obtained as
followed way that

βII = 1 − αII (
m∑

j=1

Aj,

m∑
j=1

kj, X). (17)

Simplification the Equation (16) have αII =
∣∣∣∣Pos

(X m∑
j=1

kj

∣∣∣∣
/∣∣∣∣Bn(X) m∑

j=1

kj

∣∣∣∣. Especially, if kj = 0 for any

j = 1, 2, . . . , m then, there are αI = αII and βI =
βII . There are other uncertainty measure methods
besides the two types of accuracy. We will give the
approximation degree and approximation quality in
the next.

Definition 4.3. Based on Definition 4.1., the
optimistic, pessimistic and mean multi-granulation
approximation degree of set X with respect to

(
m∑

j=1
Aj,

m∑
j=1

kj) is defined as.

π(
m∑

j=1

Aj,

m∑
j=1

kj, X) =

∣∣∣∣∣∣∣
Pos(X) m∑

j=1

kj

∣∣∣∣∣∣∣
|X| . (18)

In Equation (17), if the denominator X revised
to U and other unchanged. It’s named approxima-

tion quality of set X with respect to (
m∑

j=1
Aj,

m∑
j=1

kj).

That is
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ω(
m∑

j=1

Aj,

m∑
j=1

kj, X) =

∣∣∣∣∣∣∣
Pos(X) m∑

j=1

kj

∣∣∣∣∣∣∣
|U| . (19)

Based on these definitions one can say that these
types measure methods are basic and conventional
uncertainty measures based on approximation set. In
fact, Uncertainty is a very common and complicated
phenomenon in real world. There are also other uncer-
tainty measure methods like information entropy,
condition entropy and Shannon entropy and so on.
In our study, these measures are important numer-
ical characterizations that quantify the imprecision
of a rough set model that caused by their bound-
ary regions. In this section, we study on a urban
investment case based on our previous discussion that
find the best solution from a few of given alternative
investment options.

5. Experimental evaluation

There’s an investment company is looking for a
good city as investment project and there are ten
projects can be selected. For more effective, the
company employed serval experts test and scor-
ing these city with five indexes. They are traffic,
medical, education, tax and salary, respectively. Let
I� is an ordered information system about city
investment where the universe U = {x1, x2, . . . , x10}
stands for ten cities, the set of condition attributes
are AT = {Tra., Med., Edu., Tax, Sal. }, and let
A1 = {Med., Edu., Sal.}, A2 = {Tra., Med., Edu}
are two granules. The score of city for each index
have four levels (good � fine � poor � bad) and the
evaluation data as shown in Table 1.

5.1. Model demonstration

In order to facilitate understanding of these model,
we exhibit a computational process for each rough set
model. We first calculate the dominance classes for
each object with respect to granule A1 and A2. Sup-
pose X = {x1, x2, . . . , x5}, and k1 = 1, k2 = 2 based
on the above dominance classes by the definitions we
can get the follows results.

Case 1. The result of optimistic multi-granulation

with different grades rough set are
2∑

j=1
R

�
Aj

O

kj

(X) =

{x4, x9}, and
2∑

j=1
R

�
Aj

O

kj

(X) = {x1, x2, x3, x5, x6, x7,

x10}, respectively.
Based on the upper and lower approximations

other rough regions of X can get as follow.
They are Pos(X)O2∑

j=1

kj

= ∅, Neg(X)O2∑
j=1

kj

= {x8},

Ubn(X)O2∑
j=1

kj

= {x4, x9}, Lbn(X)O2∑
j=1

kj

= {x1, x2,

x3, x5, x6, x7, x10}, and Bn(X)O2∑
j=1

kj

= {x1, x2, x3,

x4, x5, x6, x7, x9, x10}.
Case 2. The result of pessimistic multi-granulation

with different grades rough set are
2∑

j=1
R

�
Aj

P

kj

(X) =

{x1, x2, x5, x6, x7}, and
2∑

j=1
R

�
Aj

P

kj

(X) = {x1, x2, x3,

x4, x7, x8, x9, x10}, respectively.
The other rough regions of X can be got

by the lower and upper approximations as.

Table 1
An investment evaluation table

xj Tra. Med. Edu. Tax Sal.

x1 good fine good good good
x2 good fine good fine fine
x3 fine poor poor fine good
x4 poor fine fine poor fine
x5 fine good fine good fine
x6 fine good fine good good
x7 good fine good fine fine
x8 poor bad poor fine good
x9 poor fine fine poor fine
x10 fine poor poor fine good
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Table 2
The results of uncertainty measures

No. X Optimistic Pessimistic Mean

αO
I αO

II πO ωO αP
I αP

II πP ωP αM
I αM

II πM ωM

1 x1,2,3,4,5 3.500 0.000 0.000 0.000 0.625 0.429 0.600 0.300 0.111 0.125 0.200 0.100
2 x1,2,5,6,7 2.250 0.800 0.800 0.400 0.500 1.000 1.000 0.500 0.500 1.000 1.000 0.500
3 x1,3,5,7,8 2.670 0.111 0.200 0.100 0.625 0.429 0.600 0.300 0.111 0.125 0.200 0.100
4 x1,3,4,6,7 1.600 0.429 0.600 0.300 0.625 0.429 0.600 0.300 0.200 0.250 0.400 0.200
5 x2,4,5,6,7 3.500 0.400 0.400 0.200 0.500 1.000 1.000 0.500 0.200 0.250 0.400 0.200
6 x2,4,5,9,10 2.500 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 x2,7,8,9,10 2.500 0.000 0.000 0.000 0.375 0.600 0.600 0.300 0.000 0.000 0.000 0.000
8 x3,4,6,8,9 2.000 0.143 0.200 0.100 0.400 0.000 0.000 0.000 0.167 0.167 0.200 0.100
9 x3,5,6,9,10 1.200 0.600 0.600 0.300 0.286 0.400 0.400 0.200 0.400 0.400 0.400 0.200
10 x4,6,7,8,9 2.500 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.125 0.125 0.200 0.100

They are Pos(X)P2∑
j=1

kj

= {x1, x2, x7}, Neg(X)P2∑
j=1

kj

=

∅, Lbn(X)P2∑
j=1

kj

= {x5, x6}, Ubn(X)P2∑
j=1

kj

= {x3, x4,

x8, x9, x10}, and Bn(X)P2∑
j=1

kj

= {x3, x4, x5, x6, x8,

x9, x10}.
Case 3. The result of mean multi-granulation with

different grades rough set are
2∑

j=1
R

�
Aj

M

kj

(X) = {x1},

and
2∑

j=1
R

�
Aj

M

kj

(X) = {x1, x2, x3, x4, x5, x7, x8, x9,

x10}, respectively.
According the lower and upper approximations,

the other rough regions of X can get as follow.
They are Pos(X)M2∑

j=1

kj

= {x1}, Neg(X)M2∑
j=1

kj

= {x6},

Lbn(X)M2∑
j=1

kj

= ∅, Ubn(X)M2∑
j=1

kj

= {x2, x3, x4, x5,

x7, x8, x9, x10}, and Bn(X)M2∑
j=1

kj

= {x2, x3, x4, x5,

x7, x8, x9, x10}.
It’s obviously that these three types results are

not entirely consistent. Then, the uncertainties are
not entirely consistent for them and servals kinds
of uncertainty measure methods are necessary.
Consequently, in different fields should select dif-
ferent model according the different requirements in
practical application. Based on the calculated approx-
imation sets, we can measure the uncertainty of the
alternative projects to estimate the investment.

5.2. Uncertainty evolution

To evaluate the performance of the proposed uncer-
tainty measure methods, we conduct a series of
experiments to calculate these four uncertainty mea-
sures. The experimental evaluation is running on a
personal computer with following hardware and soft-
ware that Intel i3 − 3217U, Windows8 64 bit and
Visual C + + 6.0. For convenience, we still takek1 =
1 and k2 = 2, more granules can be obtained in a
similarly way.

Suppose there are five cities should be invested,
but there is no other factors which help the deci-
sion maker. He has to randomly select five cities
to make investment that means |X| = 5 (xi ∈ X is a
city between x1, x2, . . . , x10 and not repeat any other
cities in X). In our experiment, we randomly select
five cites from the given alternatives, and uncertainty
evolutions for them as shown in Table 2.

According to the Table 2 and Fig 1., one can see
that the otherness of the first type accuracy between
these models is very big. That is because the lower

F
irs

t t
yp

e 
ac

cu
ra

cy
 (

a I
)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

 

 
Optimistic
Pessimistic
Mean

Fig. 1. A comparison of the first type accuracy.
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approximation set is not necessarily include in upper
approximation set in graded rough set. It means this
type accuracy has a smaller significant in experimen-
tal evolution. That’s reason for us why proposed the
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Fig. 2. A comparison of the second type accuracy.
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Fig. 4. A comparison of the approximation quality.

second type accuracy. The remained three uncertainty
measure approaches can estimate the investment pro-
gram better. From the Fig. 2., Fig. 3. and Fig. 4., we
can get that the second project (x1,2,5,6,7) with higher
accuracy, approximation degree and approximation
quality for each model. Furthermore, it is easy to find
that the the measure results of pessimistic model big-
ger than another two models almost all the time. But
there is no determinate order relationship between
them. According to these experimentations and inves-
tigations, we recommend the second program as best
investment project to a decision maker. There is no
doubt that there are more recommended programs,
but it’s best in the given ten options.

6. Conclusion

The multi-granulation rough set and graded rough
set are important expansions of classical rough set
and have been applied into many fields. In our study,
we integrate the good points of graded rough set and
multi-granulation rough set theory in OIS. The main
contribution of this paper is that we constructed three
different types of multi-granulation with different
grades rough set associated with granular comput-
ing, in which the upper and lower approximation
operators are got by multiple dominance relations,
respectively. We have discussed some properties of
these three types RST models and four uncertainty
measures are proposed for each RST model. They
are two types of accuracy, approximation degree and
approximation quality, respectively. Finally, we make
a series of experiments about city investment. That
can provide a valuable suggestion for decision makers
in real world. This study extended classical rough set
in viewpoint of GrC and meaningful compared with
the generalization of RST. In our further work, we
will research the reduction of these proposed models
and solve the practical issues.
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